skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tejera, Gonzalo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a biologically-inspired computational model of the rodent hippocampus based on recent studies of the hippocampus showing that its longitudinal axis is involved in complex spatial navigation. While both poles of the hippocampus, i.e. septal (dorsal) and temporal (ventral), encode spatial information; the septal area has traditionally been attributed more to navigation and action selection; whereas the temporal pole has been more involved with learning and motivation. In this work we hypothesize that the septal-temporal organization of the hippocampus axis also provides a multi-scale spatial representation that may be exploited during complex rodent navigation. To test this hypothesis, we developed a multi-scale model of the hippocampus evaluated it with a simulated rat on a multi-goal task, initially in a simplified environment, and then on a more complex environment where multiple obstacles are introduced. In addition to the hippocampus providing a spatial representation of the environment, the model includes an actor-critic framework for the motivated learning of the different tasks. 
    more » « less